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Allstraet-A cluster of elliptic delaminations between the layers in an infinite laminated plate is
considered. The three-dimensional elasticity problem is reduced to the solution of a set of integral
equations and the nature of the stress singularities along the periphery ofeach disband is discussed.
The procedure for obtaining the equations for two-dimensional problems is also described. Phys­
ically meaningful quantities like stress intensity factors and energy release rates obtained from
numerical solutions are reported for some three- and two-dimensional problems witb single delami­
nations between similar layers and are compared with other approximate solutions.

INTRODUCTION

Delaminations in composite laminates can exist as manufacturing defects or can be created
due to various reasons, namely (i) coalescence of small voids existing at interfaces, (ii)
foreign object impact, (iii) peculiar stress fields near free edges, holes, plydrops or bonded
joints. Fracture mechanics based methods and crack growth laws which make use of the
stress field near the periphery of a delamination are attractive tools for developing design
criteria for damage tolerance and in decision-making processes ofacceptance ofa structural
component containing an inherent flaw or repair of a part damaged in service. For this
reason various studies have been reported in the literature which deal with two-dimensional
stress analyses ofdisbonded laminates and determination ofmaterial properties like delami­
nation fracture toughness, crack growth resistance curves, or growth laws under cyclic
loading. In some of these studies[I-4] two..<fimensional finite element idealizations have
been employed whereas strength of materials type theories have been utilized in others[5­
8]. Reduction of the two-dimensional elasticity problem to a set of integral equations and
their numerical solutions have also been reported[9-II] in the literature. Three-dimensional
finite element techniques[12] and lower order structural (plate) theories[ll, 13] (in which
the disbond is assumed to be located between two laminated plates) have been utilized for
determining energy release rates along the periphery ofdelaminations ofarbitrary geometry
and elliptic shapes, respectively.

This study deals with the reduction of the three-dimensional elasticity problem of a
group ofelliptic delaminations in an infinite laminated plate shown in Fig. I to the solution
of a set of integral equations for determining the displacement discontinuities across the
delamination surfaces. This is performed by taking the multiple Fourier transform with
respect to the spatial coordinates (Xl and X2) of the equilibrium equations ofthree-dimen~

sional anisotropic elasticity in terms of displacements and using a stiffness formulation to
relate the transforms of the tractions on the disbonded interfaces to the unknown dis­
placement discontinuities. By taking inverse transforms of these relationships, one obtains
a set of integral equations. The nature of the stress singularities is obtained by considering
the dominant (singular) parts of the kernels which are shown to depend on the elastic
properties of the two layers above and below each disbond.

Evaluation of the regular kernels must be performed by solving the simultaneous
equations which appear in the stiffness formulation for a range of values of transform
parameters and subsequent integration necessary for obtaining inverse transforms. Pro­
cedures for numerical solutions and applications to three- as well as two-dimensional
problems are described.
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Fig. 1. Delaminations in a laminated plate.

STIFFNESS FORMULATION IN THE TRANSFORMED DOMAIN AND INTEGRAL
EQUATION

The laminate (Fig. 1) is assumed to consist of a finite number of homogeneous and
elastic layers, but the lateral dimensions (in XI> X2 directions) are considered to be infinitely
large. Denoting stresses, stiffnesses and displacements by (T, C and u, respectively, the
equations of three-dimensional elasticity for each layer are given by

(Tjk,k = 0 (1)

(2)

Using Latin suffixes j, 1which take values 1, 2, 3 and Greek suffixes ex, pwhich take values
1,2 substitution of eqn (2) in eqn (1) yields

(3)

Taking the multiple Fourier transfonn with respect to XI> X2 of eqn (3) one obtains three
ordinary differential equations in tenns of the transfonned displacements defined by

(4)

where x = (XI,X2) and ~ = (~I' ~2) are vectors, and i =.j -1.
After determination of the characteristic roots of these equations and evaluation of

the unknown constants in tenns of transfonned displacements on the surfaces z = ±h/2 of
the layer, it is possible to evaluate the stiffness matrices relating the transfonns of tractions
and displacements on the two surfaces. Let [TI> T2, iT3]!r at z = h/2 be denoted as 1'1> where
tl> t2 and t3 are tractions in the positive XI-, X2-, and Xl-directions and [ul>ih,iu3j1r at
z = h/2 be expressed as '0 I' Let the corresponding quantities at z = - h/2 be written as t 2

and '02, respectively. Then one can write

II 12

t l = [K]'OI + [K]'02
21 22

1'2 = [K]'OI+[K]'02 (5)

21 12
where [K] = [K]tr. Calculation of stiffness matrices for isotropic layers is straightforward~

Closed fonn expressions for transversely isotropic layers when the normal to the plane of
isotropy is parallel to the XI-X2 plane are given in Appendix A. Commonly used unidi­
rectional fiber composites fall in this category.

Introducing the transfonns of displacement discontinuities if across the jth delami_
nated surface as unknowns and making use of a global stiffness fonnulation described in
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Appendix B, it is possible to express the transforms of tractions fj on the top face of layer
Ii below the disbond in terms ofvj (eqn (B8». Denoting T'j'(x) and vj'(x) as the prescribed
tractions on the bottom face of disband r on the jth surface and the displacement dis­
continuity across the same delaminated area, respectively. Taking the inverse transform of
eqn (B8) one obtains the following equations for m disbonded interfaces, jth interface
containing Qj numbers ofdisbonds :

m Q, f 0
T'/(x') = I I [Gj~(x', x)]vf (x) dApq +Tj(x');

p_1 q_l

x'inA j, r=l, ... ,Qj j=l, ... ,m (6)

o
where Tj(x') depends on the prescribed tractions on the top and bottom surfaces of the
laminate, x' = (x'" x;), and each of the displacement and traction vectors contain three
components in the XI' X2, Xl directions. The kernels G (3 x 3 matrices) are given by

,= .j(et+en
e= (e1>'2) =(, cos q", sin r/J).

x' in Ajr, x in Apq (7)

(8)

(9)

C*p and Cjp can be evaluated in terms of, and r/J by the methods described in Appendix
B. Ojp is the Kronecker delta.

TYPES OF STRESS SINGULARITIES

The dominant parts of the kernels are obtained by taking the effects of displacement
discontinuities at one disbond on the tractions at the same place (i.e. p = j, q = r) and
retaining only [C*iJ in ,[HiP] given by eqn (8). Considering only this dominant part,
assuming that the principal axes of the elliptic disbond with semiaxes (ah a~ coincide with
Xl> X2 axes and transforming the ellipse onto a unit circle A o one obtains three integral
equations for determining three displacement discontinuity functions. Willis[14] discussed
this problem when a I = 02 (i.e. the case of a circle) by the use of Radon transform and his
results indicate that each of the three displacement discontinuities between two different
materials can be expressed as a sum of three functions, the asymptotic of which forms as
the disbond periphery is approached, are given by bo(0)(I-R~I/2, bl(O) (1_R 2)1/2+i&(8l

and b1(0)(1_R 2)1/2-i8(8l, (R,O) being the polar coordinates in circle Ao, bo, b h 51 are
functions of (J only. Stresses near but ahead of the disbond periphery can be expressed as
a sum of three functions which are similar to those for displacements with 1/2 replaced by
-1/2. For different isotropic layers above and below the disbond 6 is independent of O.
Similar stress singularities have been found to occur in two-dimensional problems of
interface cracks between two dissimilar isotropic or anisotropic media[lO, 15-17]. It can be
shown that for the case of two anisotropic media 6(0*) in the three-dimensional problem
coincides with 6 for the two-dimensional problem when the XI-axis is taken to coincide with
the direction of the normal to the circle at 0 = 0* and all quantities are assumed to be
independent of the xraxis (tangent to the circle).

For the case ofelliptic disbonds, following procedures similar to those used by Willis,
but retaining the expression for C· which is dependent on a I and a2 (see discussions at the
end of Appendix B), it is possible to show that similar stress singularities do appear where
6 varies along the periphery of the disbond and is again given by the value for the two­
dimensional problem with the XI-axis coinciding with the direction normal to the ellipse at
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any particular point on the disbond periphery. A physically unrealistic interpenetration
associated with such singularities has been the subject of many investigations[l6], dealing
with two-dimensional problems. However, this will not be addressed here since in what
follows we will restrict ourselves only to the case of inverse square root type singularities.
It should also be noted that in many cases such interpenetration occurs over a very small
zone and does not influence physically meaningful quantities like energy release rates[14,
16].

SOLUTION FOR A CLASS OF THREE-DIMENSIONAL PROBLEMS

For the purpose of numerical solution, it is necessary to express the displacement
discontinuities in terms of three unknown functions which can be expanded in terms of
orthogonal sets with weight functions similar to the asymptotic forms described earlier.
Using similar expansion schemes for the tractions, the set of integral equations, eqns (6)
and (7), can then be reduced to a system of algebraic equations. Although the asymptotic
forms of the displacement discontinuities are quite clear, no expansion scheme with appro­
priate orthogonal sets has yet been developed for solution of the general three-dimensional
problem. Willis[14] used an expansion scheme for the Radon transforms ofthe displacement
discontinuities when e is independent of O. From this work and those on two-dimensional
problems it is clear that considerable computational effort is necessary for solving the
general problem even if appropriate orthogonal sets with e varying along the disbond
peripheries are obtained. We, therefore, defer the solution of the general problem to future
studies and restrict ourselves to the case of laminates with arbitrary lamination sequence
but containing delaminations only between two similar layers. For this restricted class of
problems e = 0 and the stress singularities are of the inverse square root type.

We now use the following transformations for x varying over area Apq which is assumed
to be elliptic in shape

(10a)

where omitting the superscripts pq for the particular disbond, XOis the coordinate of the
center of the ellipse and

. [ al cos 00
X ltr = y[cos () sm 0] .

-a2 sm 00

al sin 00 ]

O
; 0 ~ y ~ 1, 0 ~ 0 < 21£

a2 cos 0
(lOb)

(a to a2) and 00 being the semiaxes of the ellipse pq and the inclination of semiaxis a\ with
the xl-axis. Use ofeqns (10) yields

pq pq jr jr

(X-X/).~ = ~yf cos (O-l1)-~y'f cos (()'-l1)+~Ro cos (cf>-<Po)

where

(11 a-<:)

Ro is the projection of the line segment joining the center of the ellipse jr to that of pq on
the X\-X2 plane and <Po is the angle which this projected line makes with the xl-axis.

Jf J'

Relations similar to eqns (lIb) and (lIe) ho~d for f(cf» and 11. In what follows we will omit
pq pq Jr Jr

the superscriptspq and}r and denote f, 11, f, 11 by f, 11'/', rl', respectively, all of which are
functions of cPo With these notations one can write[18]
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<J:)

eiey/cos(8-q) = Jo«(,fy)+2 L (i)'Js(,jy) cos s(O-,O (12)
s= I

and a similar series with i replaced by - i for exp [- i,y'f' cos (0 - '7')], Js being the Bessel
functions of the first kind of order s. We can now expand each of the three components of

o
the vector functions vf (= Vl, a= 1,2.3) and T'j" - T'i (= 'y, y= 1,2,3) as

<X) 4

vt(x) = L L y''''V~S~6(y)t/ls~8(O)
s- 0 p- I

<X) 4

,,(x') = L L ao(s~)t;s~(y')t/ls~(e')
.-0 ..-1

t/I.,.,(9) = cos spr,fl; P== 1,3

= sin sfJd9; p= 2,4

ao == 1; s~ == 0

=2; s~>O

SfJd = 18 for p= 1,2,<5 = 1,2 and p= 3,4,<5 = 3

=18+1 p=3,4,<5==1,2 andp==1,2,<5==3.

Expanding Vf.,., in a series ofJacobi polynomials

and using the identity

"P~!!1")(2y2 -I) == L d~l,,(l-y2)"I-1
nt- I

where

d~" == r(n+!)/[(n-I)! r(3/2)]

d(", + 1)n/d~I" == (n+s+!+nl -I) (nj-n)/[(3/2+nl-l)nd

(13)

(14)

(15)

and r denotes the gamma function, which is obtained by using the expression of Jacobi
polynomials in terms of the hypergeometric function, and other integral formulae[18], one
can write

(16)

for s' == 0, 1, ... , ex) and the range of values ofj, r, l%, and y given earlier. In the right-hand
side sums over p and q are as in eqn (6) and those over s, n denote the infinite series, eqns
(13) and (14). SP6 and s~ are given in eqns (13), and
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a\, a2 are the semiaxes of the elliptic disbond pq, and wop (IX = 1,2, ... ,4; fJ = 1,2, ... ,4)
are 3 x 3 matrices given below.

For afJ = 1,2

H' = Cl[ :
-1

1

1

-I

-1]
-1 .

1

(18)

For IXfJ = 3, 4 the multiplier remains the same as C I but all the elements of the matrix are
equal to I. For (X = I, 2; fJ = 3, 4 the multiplier is 51; the elements of the first two rows
are equal to - 1 and the others are equal to 1. For IX = 3,4; fJ = 1, 2 the multiplier is again
51 but the elements of the first two columns are equal to 1 and the others are equal to - 1.
C I and 5 I are given by

C 1= cos {~Ro cos (4)-4>o)}, 51 = sin gRo cos (4)-4>0)}.

Roand 4>0 are defined in the statements after eqn (11). Note that we have used the properties
H).,,(n+4» = Hy,l(4)), yo = 11,12,22,21,33 and Hya(n+4» = -HyaC4», yo = 13,31,23,32.
Note that the coupling between delaminations vanish when R o -+ 00 by virtue of the
Riemann-Lebsesgue lemma. Also, some of the displacement components become
uncoupled when R o = O.

Multiplying both sides of eqn (15) by y'S~,+ \(1 - y'2) 1/2 p~.leis~,) (n' = 1,2, ...) and inte­
grating with respect to y' from 0 to lone obtains the following set of algebraic equations:

(19)

} = 1, ... , m; r = 1, ... , Q); IX = 1, ... ,4, I' = 1, ... ,3; s' = 0, 1, ... , 00 ; n' = I, ... , 00

where L is given by an expression similar to that for LO in eqn (17) with a summation over
n'l from I to n' and the terms ~3/2-nIJs' (~f'y) replaced by..,

Truncating the system and retaining terms such that s, s' ~ Smax and n ~ N(s),
n' ~ N(s'), where N(s) = Smax -s+ I, one can obtain an approximate solution of the system.
Noting that [C*P] in eqn (3) can be written as ~[COP(4))], and H;;y = I, -1 or 0 when} =p,
r = q the integral with respect to ~ for the dominant part of the kernel can be explicitly
evaluated with the help offormulae[18]. Other integrals with respect to eand cP are evaluated
numerically. In this study we have used the trapezoidal rule for integration with respect
to ¢ (with conditions F(~, n) = F(~, 0» and used the transformation ~ = (~*')/(I-') to
transform the domain (0 < ~ < (0) to (0 <, < I) along with Simpson's rule to perform
the integration with respect to' (with the conditions F(O,¢) = F(<X),4» = 0). A value of
5max = 3, ten integration points for 4> and 80 points for' (equally spaced) with e* = 80
were found to yield reasonably accurate results in the problems discussed later.

STRESS INTENSITY FACTORS AND ENERGY RELEASE RATES

To evaluate the stress intensity factors, we make use of eqns (16) and (17) and restrict
our attention to the region y' greater than but in the neighborhood of 1. We retain only the
dominant part [COP(¢)] = I/~[C·P) of [HiP] and the terms for p =} and q = r (i.e. v~ for the
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same disbond where stresses are being evaluated). It can be shown that the interactive
traction imposed by the layer above the jth interface on the layer below is bounded except
for nl = 1.

After some algebraic manipulations, the tractions can be expressed as (y = 1,2, 3)

[y(tt) ~ (y' -1)- 1/2 2: 2: 2: 2: L**(tt)l/Js~;)(l1)V~~
fJ 6 s n

where

L**(tt) = Ag('1)f(<p)-3C~H<p)

A = -aja22 II 2[r(!)r(n+DJ/[n(n-l)!]

A. -I (al tan '1) ()
'I' = tan + 0

a2

() (
COS2 tt sin2 tt)

g'1 = --+-- .
a} a~

The sum over ~ is evaluated over 1,2 for y = 1,2, and for y = 3, ~ = 3 is taken.
Asymptotic forms of the displacement discontinuities are given by

(20a-e)

(21)

If R, R' are the distances measured in the direction of the outward and inward normal
to the elliptic disbond one can write

(y' _1)1/2 = R- 1/2/(g('1W /4 y' > 1

and (22)

(1- y)1/2 = R' 1/2(g('1» 1/4 y < J.

The stress intensity factors for modes II and III can be calculated by taking the
components of I. and 12 in the directions normal and tangential to the disbond periphery
and multiplying the sum appearing in the right-hand side of eqn (20a) by (g(n» 1/4. For mode
I the sum (with a= 3 only) is multiplied by the same factor. For calculation of the mode I
component of the energy release rate the concept of work done for crack closure (due to
Irwin) can be directly utilized. For modes II and III it is necessary to calculate the dis­
continuities in displacements normal and tangential to the disbond periphery which can be
evaluated from eqn (21). The details are straightforward and omitted for brevity.

TWO-DIMENSIONAL PROBLEMS

For two- (or quasi-three) dimensional problems where the elliptic delaminations are
replaced by disbonds which are infinitely long in the X2 direction, all quantities can be
assumed to be independent of X2' In such problems the vectors x' and x are to be replaced
by Xl and x .. respectively, in the integral equation, eqn (6), and the integral is taken over
the length of each delamination in the x 1 direction. The kernel in eqn (7) is evaluated by
integrating with respect el only (since only the single Fourier transform is required) and e2
everywhere else (in eqns (7)-(9» is taken equal to zero. Solution of such singular integral
equations and resulting stress singularities has been considered in several studies[9, 10, 17].
For delaminations between similar layers the dominant kernels are Cauchy kernels and
stress singularities are of the inverse square root type. Collocation methods and Gauss-
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Fig. 2. Intensity factors and energy release rates in a «0./ +452),). laminate for a quarter plane
disband under xz shear.

Chebyshev integration formula[19] are utilized to obtain the results for two-dimensional
problems reported later. Numerical integration is utilized to evaluate the regular kernels.

RESULTS, APPLICATIONS AND DISCUSSIONS

Variation of strain energy release rates and stress intensity factors along the periphery
of a 25.4 mm diameter circular disbond located at the quarter plane of a «04/±45 2),)4
ASI/3501-6 laminate due to transverse shear stress applied on disbond surfaces is shown
in Fig. 2. The 0° lamina properties (ply thickness = 0.1514 mm) used for calculations are
Young's moduli EA = 125 GPa, ET = 10 GPa; Poisson's ratio VA = 0.28 (transverse strain
for unit axial strain) and shear moduli GA = 5.8 GPa, GT = 3.7 GPa, A and T denoting
axial and transverse properties. Results are plotted against angle e (from the x-axis) from
0° to 90° since for all practical purposes the intensity factors are antisymmetric about the
y-axis and symmetric about the x-axis. Also plotted in Fig. 2 are the energy release
rates obtained from the approximate bonded plate model[lI, 13]. The results are in close
agreement with the present solution especially in the case of Gil and Gh possibly because
the plate bending rigidities D I I of the two plates are extremely high as compared to shear
stiffnesses. D22 and D66 are not as large as D 11 (see Ref. [11]) and possibly for that reason
there is more discrepancy in the values of Gill for e> 45°. Similar comparisons can be found
elsewhere[20] for a midplane disbond where the differences are less than those in Fig. 2.

Therefore, failure loads for quasi-static fracture of test specimens with midplane
disbonds obtained from the present solution will be close to those obtained from the bonded
plate model as well as experimental data[13, 20].

Results for a midplane disbond (45.8 mm diameter) in a «304/(75/-15h).).laminate
of the same material with a ply thickness of 0.1328 mm (EA = 142 GPa, other properties
chosen to be the same as in the problem described above) with prescribed shears on the
disbond surfaces are plotted in Fig. 3 for .xi.,z = 5.4. This ratio is the value which will be
found in a laminate carrying a shear force Qx with all quantities independent of the y­
coordinate. The results are interesting in the fact that at some points Gil (or GllI) are
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Fig. 3. Intensity factors and energy release rates in a «30./(75/-15)2)'). laminate for a midplane

disbond under xz and yz shear.

negative although the total energy release rate at every point is always positive. This pheno­
menon has no counterpart in problems of isotropic media since the energy release rate
components I, II, III are related to the squares of the corresponding intensity factors.
Individual components of the energy release rates or their sum are often used for calculating
quasi-static fracture load and growth of such disbonds under fatigue[lI-13]. Although the
phenomenon discussed above may not affect quasi-static fracture loads, it may have some
influence on the growth of disbonds under fatigue if it is assumed that the rate of growth
per cycle depends on the stress field ahead of but near to the disbond periphery (in metals
this influences the plastic zone size). Therefore, a scalar function of the intensity factors or
its range under fatigue loading may be better suited for quantitative correlation with crack
growth rate. Such a model has been used extensively in a detailed experimental/analytical
correlation study[20] with single as well as multiple elliptic disbonds in various laminate
configurations. Results given in Fig. 3 are for 0 ~ 0 ~ 1t and K(1t +0) = - K(O). Energy
release rates obtained from the bonded plate mode1[II, 13] plotted in the same figure show
significant differences in the values of Gm, possibly for the same reasons discussed in the
previous paragraph.

Figures 4 and 5 show the displacement discontinuity gradients for the plane strain
problem of a 25.4 mm long midplane disbond in a «04/ ± 452),)4 laminate subjected to
tractions in the x and z directions, respectively, equal and opposite on the two faces. For
the finite element results we have made use of constant strain triangular elements which
yields finite values ofthe gradients at the crack tips in contrast to the square root singularities
in the elasticity solution. In both solutions we have replaced the (±45) layers by a material
with smeared properties based on the assumption ofconstant in-plane strains and constant
transverse shear and normal stresses. This was done to limit the number of degrees of
freedom in the finite element model where layers of different orientations have to be
modelled separately. Each ply is assumed to be 0.1398 mm thick. The 0° layers are assumed
to have an axial Young's modulus EA of 125 GPa and other properties the same as those
in the two previous problems. Although the singularity at the tips is not strictly modelled in
the finite element solution the displacement gradient is very accurately predicted elsewhere.
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Elements with singular fields or other modifications may be utilized to obtainmoreaccurate
results. However, for the present work such modifications are not attempted since the
energy release rates were found to be quite accurate. Also shown in the figures are two
approximate closed form solutions, where the disbond is assumed to be located between
two laminated plates which behave according to shear deformation plate theory but are
subjected to unknown tractions on bonded parts of the interface. These are two-dimensional
versions of the bonded plate model[ II, 13] and the solutions are given in Appendix C.
Although the results show significant differences in the displacement gradient from the
other two solutions near the tips, energy release rates computed are not far off from those
obtained from elasticity and finite element solutions as given in Table 1.

These results are not surprising since strength of materials type solutions are known
to yield a good measure of energy release rates in many problems without the capability to
model the exact deformation patterns near crack tips. For the same reason the bonded



Three- and two-dimensional stress fields near delaminations in laminated composite plates 1545

Table I. Non-dimensionalized energy release rates for midplane
disbonds in «04/ ±452),)4 laminates under plane strain

Eo ""' 6.895 GPa, 2a ""' 25.4 mm

Disbond under Disbond under
unit shear stress unit normal stress

J(G~:o) J(G~o)

Present
Finite element
Close form solution

0.77
0.73
0.64

2.48
2.39
2.24

plate model yields results close to elasticity solutions for the three-dimensional problems
considered. Double cantilever beam specimens commonly used for mode I fracture char­
acterization[6] are usually analyzed by such strength of materials type solutions. In the
results given in Table I, the difference in .jOt in the mode I problem is 10%. Whereas that
in ,JOn for the mode II case is about 16%. These differences usually depend on the ratio
of disbond length to the plate thicknesses and should become less if these ratios are
increased. Therefore, some care should be taken in using such elementary solutions for
material characterization studies.

In calculating the energy release rates from the finite element solutions we have made
use of the same principles as in the bonded plate models by taking half of the product of
the interactive nodal force acting on the top half at the tip node and the displacement
discontinuity gradient evaluated from the element above and below the disbonds closest to
the tip.

It may not be necessary to use finite elements with singular fields to obtain accurate
values of energy release rates. It should be pointed out, however, that in problems where
the disbond is not on the midplane mixed mode effects will exist and the displacement
discontinuities will be such that the disbond may remain partially closed. Also the relative
influence of each mode on fracture is not very clear. Although attempts have been made in
the past to predict fracture using the total energy rates without any consideration to such
closures under mixed mode conditions and the results are found to be close to test data (see
Ref. [11], where elasticity solutions have been utilized), further studies should be conducted
to determine the sensitivity of results to the closure effects as well as different mixed mode
fracture criteria.

In all applications considered here we have assumed that disbond growth will be
coplanar and indeed in many cases such a growth pattern may cause failure. There are,
however, examples[ll, 13,20] where non-eoplanar growth can occur, i.e. when the disbond
can find easy paths to grow without cutting across fibers. It is hoped future studies will be
directed at modelling such growth to obtain a better understanding of this interesting but
complicated subject of delamination fracture.
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APPENDIX A. STIFFNESS MATRICES OF TRANSVERSELY ISOTROPIC LAYERS

In fiber composite laminates commonly used in practice, the layers are unidirectionally reinforced composites
with the direction of fibers parallel to the x I-X, plane. Let the fiber direction make an angle ewith the x I-axis. A
laminate is usually made of several such layers with different values of e. Writing X'I = X, cos e+x, sin e,
x', = - X I sin e+x, cos e, a similar relationship between ~j and ~ j where ~j are the transfonn parameters intro­
duced in eqn (4) and V', as the displacements in the X'io x'" x) directions one can express the transformed
tractions at z = hj2 in the same directions in the following fonn for symmetric (c = I) and antisymmetric (c = 2)
displacement fields about the midplane of the layer

where

[' l ['Ii'J I (hj2) k', I

+(hj2) = ~'dhj2) = sym.

ili')J(hj2)
[' lii'l(hj2)

,
ii',(hj2)

/ii'J(hj2)

, '
= [K']U'(hj2) (AI)

and

~k"1 = C ss V,).',).')(A!-ATlf,f,H'l(ATi:dl- A!.l.',fI)fJ]

~k'" = Css~'I~'l(i:,f,-.l.·,fI)f)

~k'lJ = CS5~'I[ -.l.',i:J(1-ATlfl +i:,.l.'J(l-A!)f,-U(AT-A!)f,]

~k'l' = C55~"'(A!.l.'d,-AT.l.dl)fJ

~k'l) = C..~',[2.l.'J(i:IATf, -.l.',A!f,)-(.l.'J'+~D (AT-A!)f,]

H')J = C5s~P'J(A!-AT)

(A2)

also fq, q = I, 2, 3 are given by
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and

Case I (c = 1)

It = tanh ;.~ ~

Case 2 (c =.2)

, h
coth A. 2

1
K; =2[K'±,j(K,2_4C22IC I I)]' q = 1,2

A: = (CI2+CB)/(Css-C22IK;)

K' = (CIIC22-C~2-2CI2CB)/CIICB

Ki = C••/CSl

;.~ = ,j(fI2
/ K;+fl) (A3)

Clj being the effective stiffness in contracted notations, direction I coinciding with the fiber direction and C55 and
C•• denoting the axial and transverse shear moduli, respectively. Simple transformations can now be utilized to

c

obtain the stiffness matrices used in eqn (5) from the elements of [X1 given in eqn (A2). These transformations
which include those to consider direction changes of in-plane displacements and shear tractions as well as the
combination of symmetric and antisymmetric fields about z "" 0 are omitted for brevity but can be found
elsewhere[20].

APPENDIX B. TRANSFORMS OF TRACTIONS AT DISBONDED INTERFACES

Denoting the top and bottom surfaces of the laminate as the first and nth interface, respectively, and the lth
interface (I < 1< n) as the one between the (/-I)th and hh layer we write VI as the displacement vector at all
perfectly bonded interfaces and at the first and nth interfaces. Note that

(BI)

At the disbonded interface Ij U= 1,2, ... , m) we introduce the unknowns V'j such that

where vt =vt I - Vii, is the displacement discontinuity.

II- 22-

[X~]-I = [X,)+[X'r tl-,. .,
[X,) = the asymptotic form of [X,) as ~ -+ 00.

It follows that

(B2)

(B3)

(84)

Substituting U'I> U'Z from eqns (BI) to (B4) in eqn (5) and imposing the conditions that tractions T h T. are
prescribed at the top and bottom surfaces and tractions at all other interfaces are self equilibrating (including the
disbonded ones), i.e. Til +Ti2- I = O. I < I < n, one obtains

[ ~T] [11]
[XG] [::] = [B] ~, + ~ .
3lllIC 311 J 311 x )"'. •

~. ; :
~: 1.

(B5)

The matrix X G is the global stiffness matrix in the transformed domain and the non·zero elements of columns
3j-2, 3j-l, and 3j of matrix B are given by

11 It-

Rows 3Ij -5 .... 3/r 3 -[X'rl][K~][X,)

II 22- 22 II-

Rows 31j - 2 -+ 31j [X,) [X/~J [X'r tl- [Air IJ (X~] [X,)
21 22·

Rows 31j + 1-+ 31j +3 [K,) [X~][X'r I).

Equation (B5) can be formally solved to express ~, as

(86)
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m

Vi = 2: [D/plV;+[EII ]'f,+[E,1]1,.
P~I

(B7)

(B8)

The transfonn of the traction vector on the top face of layer If (j = 1,2, ... ,m) (corresponding to the bottom
surface of disbonded interface I) can therefore be written (with the help of eqns (5), (BI)-(B4) and (B7)) as

1 i
: = 1j = [C*f)Vj+ f [CjP1V;+'fY

p-I

where

1'- n-
[Cj) = -[KI)[K~][K/I_') (89)

11 12 11- 11 n-
[CIP] = [KI) [DlfP]+ [K1j] [D(lI+ ,)p]+ [KJJ -KI)[K~)[Klf_,]bIP

12 11·

+ [KJ) [K~+,] [K1j+,lb(j+ 1)pb(lj+ 1)1)+, (810)

ojp being the Kronecker delta. The term fJ is the contribution due to f I and f o'
II- 22- II 22

It should be noted that [C*] ineqn (B9) depends on the asymptotic forms [K] and [K] of [K]and [K] of
the layers below and above the disbonded interface, respectively. Elements of these matrices can be obtained
from those in Appendix A by substituting!, =/2 =/3 = 1 in eqn (A2) and performing the subsequent transfor­
mations. It can be shown that they are homogeneous functions of degree one in ~h ~2 (the case ofgenerally
anisotropic half spaces with an interface flaw is discussed in Ref. [14D. If one now considers a single elliptic flaw
with semiaxes a, a2' and the principal axes coinciding with x h X2 directions one can write

(BII)

where C" also depends on the properties of the layers above and below the disbond

and g is given by eqn (20e).
The arguments ofC:,* in eqn (B11) are the direction cosines of the nonnal to the ellipse at the point (a I cos rP,

a2 sin rP). Since the type of the stress-singularity at any point on the disbond periphery is characterized by the
relative magnitudes of the elements of [C*] (see Ref. [14]) they depend only on the properties of the two layers
and the direction of the normal to the ellipse at that point.

APPENDIX C: BONDED PLATE SOLUTIONS FOR MID-PLANE DISBONDS IN SYMMETRIC
LAMINATES UNDER PLANE STRAIN CONDITIONS

Unit shear stress prescribed (Fig. 4)
In this case there is no deformation outside the region -0"; x ,.; 0 and the in-plane displacement uo, bending

rotation"', axial force N and bending moment M in the top half are

Uo = (a 2 -x2)/2A, t/t = H(x 2 -a2)/8D

N= -x, M=Hx/4 (CI)

where A, D are the axial and bending of rigidity of the top (and bottom) half of the laminate and H is the total
thickness (Fig. 4). For the bottom half t/t is of the same sign but N is the negative of that given byeqns (CI).
There is a concentrated force of magnitude te == 0 acting in the negative x direction. The gradient of the
displacement discontinuity is given by -4x(1/2A -H2/32D).

Unit normal stress prescribed (Fig. 5)
This problem is symmetric about the mid-plane as well as x = 0 and for the top half we have Uo = N == 0

everywhere. t/t, plate displacement gradient w.x and other stress resultants (Q being the shear force) are

For Ixl < a

tit = (-x3/6+M"x)/D

w. x = -(I/K+Mo/D)x+x 3/6D

Q= -x

M= -x2/2+Mo

For x > a

tit = 1/1(0) e-~(X-')

w. x = 0
Q = Kt/t(o) e-·(x-a)

M = -Wtlt(a) e- 2(x-a) (C2)
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where). 2 =K/D. K being the shear stiffness of the top half. Unknown constants M0 and "'(a) are evaluated from
the conditions of continuity of", and M at x = a. The concentrated force on the top half in the z direction at the
disbond tip is evaluated as the difference between values of Q for x < a and x > a.

Energy release rates for both cases are computed as half of the product of the concentrated interactive force
at the tip and the displacement discontinuity gradient[ll, 13].


